ESR электролитических конденсаторов
В основном параметр ESR касается именно электролитических конденсаторов. Электролит, который там есть, теряет часть своих свойств при нагреве и конденсатор меняет свою емкость, что, конечно же, нежелательно. После приличного нагрева конденсатор начинает тупить, вздувается и быстро стареет.
У вздувшихся конденсаторов в первую очередь как раз ESR и растёт, тогда как ёмкость до определённого времени может оставаться практически номинальной ( ну той, которая написана на самом конденсаторе)
Чаще всего они вспухают в импульсных блоках питания и на материнках, обычно рядом с процессором (там выше на них нагрузка, да и тепло от процессора, вероятно, свою роль играет). Один из характерных симптомов: техника (комп, монитор) начинает включаться всё хуже и хуже. Либо с паузой (до нескольких часов после включения в сеть), либо с -дцатой попытки.
Ещё симптом: если отрубить питание на некоторое время (сетевой фильтр выключить, или из розетки выдернуть) – то снова начинает включаться не с первой попытки, или после паузы. А если не выключать питание, то комп может включаться сразу (но это тоже до поры, до времени, разумеется). Но бывает, что конденсаторы не вспухли, а ESR уже в десятки раз выше нормы. Тогда, понятно, заменяем. По опыту – очень частая проблема. И весьма легко диагностируемая (особенно, при наличии чудо-приборчика от китайских товарищей).
Доработанная схема измерителя
Схема, показанная на рис. 1, вполне работоспособна, однако имеет один существенный недостаток. Нетрудно заметить, что если к схеме подключить неисправный конденсатор, имеющий пробой диэлектрика, стрелка прибора так же, как и в случае проверки исправного конденсатора, приблизится к нулевой отметке. Для устранения указанного недостатка в схему введен переключатель S1 (рис.2).
Рис. 2. Модернизированная схема измерителя ESR для оксидных конденсаторов.
В верхнем положении контактов переключателя (как показано на схеме) прибор работает как измеритель ESR, и стрелка измерительной головки отклоняется под воздействием выпрямленного напряжения
генератора. В нижнем же положении контактов переключателя S1 стрелка измерителя отклоняется под воздействием постоянного напряжения источника питания, а измеряемый конденсатор подключают параллельно головке.
Процедура измерения выглядит так: подключают щупы к измеряемому конденсатору и наблюдают за стрелкой. Допустим, стрелка приблизилась к нулю, по части ESR конденсатор исправен. Переключают S1 в нижнее положение.
При исправном конденсаторе стрелка измерительного прибора должна вернуться в положение «бесконечность», так как конденсаторы не проводят (вернее, не должны проводить) постоянный ток. Пробитый же конденсатор зашунтирует головку, и стрелка измерителя останется в нулевом положении. Отклонения стрелки на конечную отметку шкалы на постоянном токе (в нижнем положении S1) добиваются подбором резистора R3.
Для защиты измерительной головки от механических повреждений импульсом разрядного тока (при случайном подключении измерительных щупов к заряженному конденсатору) служат кремниевые диоды VD2, VD3. Заряженный конденсатор будет разряжаться через обмотку I трансформатора Т1.
Будьте внимательны, не подключайте щупы к заряженному конденсатору! Автор как-то подключил прибор к конденсатору на 220 мкФх400 В в схеме компьютерного монитора, только что отключенного от сети. Прибор выдержал, но щупы приварились к выводам конденсатора. Пришлось менять «цыганские» иголки, которые служили щупами.
Естественно, подключать щупы к измеряемому конденсатору нужно в верхнем положении переключателя S1, чтобы он разрядился через обмотку трансформатора, в противном случае можно сжечь головку и диоды! Чтобы не задумываться, в каком положении находится переключатель, в качестве S1 лучше применить кнопку (или переключатель типа П2К) без фиксации. Подключают щупы, измеряют ESR, конденсатор разрядился, затем нажимают кнопку и проверяют конденсатор на пробой.
Наличие переключателя S1 дает возможность «прозванивать» проводники печатной платы, позволяя выявлять обрывы, микротрещины или случайные замыкания между дорожками.
На переменном токе этого сделать нельзя, так как, например, из-за наличия в схеме блокировочного конденсатора прибор покажет замыкание между общим проводом и проводником питания.
Существуют и другие области применения прибора. С его помощью, благодаря наличию генератора импульсов, можно проверять исправность трактов РЧ и ПЧ радиоприемников и телевизоров, а также видеоусилители, формирователи импульсов и т.д.
Спектр гармоник сигнала прямоугольной формы генератора, работающего на частоте 100 кГц, простирается вплоть до сотен мегагерц. Телевизор реагирует на подключение щупов прибора даже к антенному входу ДМВ диапазона! В диапазоне МВ на экране телевизора отчетливо просматриваются горизонтальные полосы.
Схема
Основным несущим компонентом для монтажа всего и получения, в конечном счете, желаемого выбрал прочный пластмассовый пинцет, входящий в набор устройства для производства оттиска печати на документах (наборная печать). К нему, при помощи металлической пластины, прикрепил индикатор от магнитофона М4762 предназначенный для работы в вертикальном положении шкалы, с током отклонения 220 — 270 мкА, внутренним сопротивлением 2800 Ом, с габаритными размерами 49 х 45 х 32 мм и длиной шкалы – 34 мм. Так же установил на него щупы — контакты и разъём питания.
Шкалу индикатора заменил
Символ бесконечности придаёт ей несколько вызывающий вид, но по сути всё верно, тут важно через увиденное понять, что у измеряемого конденсатора нет превышения допускаемого эквивалентного последовательного сопротивления (ESR), а всё что свыше того (до бесконечности) к эксплуатации не пригодно. Градуировка новой шкалы полностью соответствует задачам дефектовки
В дальнейшем предполагается отклонение стрелки измерительного прибора выставлять, при помощи подстроечного резистора, на конечное деление шкалы, которое будет соответствовать определённому значению ESR. Можно установить полное отклонение стрелки при 1 Ом, а можно и при 10 Ом и т.д. (как будет желаемо).
Печатная плата была разведена только под часть электронных компонентов, остальные (в данном конкретном случае) гораздо удобней разместить навесным способом. И в первую очередь это касается подстроечного резистора который будет размещён снаружи корпуса. Доступность регулировки позволит при необходимости в любой момент перенастроить значение ESR относительно полного отклонения стрелки на шкале индикатора.
По готовности печатной платы и трансформатора была произведена предварительная сборка и опробована работоспособность пробника. Подключённый резистор сопротивлением в 10 Ом удачно вписался в показания стрелки, она отклонилась почти на всю шкалу, что означило максимально возможный для визуального восприятия ESR и будет в данном случае равен 10 Ом.
Конденсатор и два диода были смонтированы навесным способом монтажа на контактах индикатора, всё остальное (за исключением подстроечного резистора) установлено на плату.
После окончательного, чистового соединения всех узлов ещё раз проверил работоспособность – без замечаний. Трансформатор приклеен к плате клеем «Мастер».
Печатная плата помещена в металлический корпус, в качестве которого использована часть пришедшего в негодность печатного вала катриджа принтера. Корпус одет на цилиндрическую часть (выступ) индикатора. Заглушкой для торцевой части послужила подходящая пластиковая пробочка. На ней установлен подстроечный резистор, а лучше поставить маленький переменник (буду менять). Габаритные размеры пробника, как видно на фото, сопоставимы со спичечным коробком, изначально задуманный мобильный с возможностью все доступности вариант думаю удался.
После полуминутной настройки стрелка занимает следующие положения на шкале индикатора: при накоротко замкнутых контактах.
При подключении резистора номиналом 0,1 Ом.
При подключении резистора номиналом 1 Ом, а при 2,5 Ом стрелка встаёт перед последним делением.
Результат проведённой дефектовки припасённых к этому случаю электролитических конденсаторов б/у.
Как это происходило – индикатор в работе.
ESR — оно же эквивалентное последовательное сопротивление
Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем «Прогресс». Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?
где
r — это сопротивление диэлектрика и корпуса между обкладками конденсатора
С — собственно сама емкость конденсатора
ESR — эквивалентное последовательное сопротивление
ESI (чаще его называют ESL) — эквивалентная последовательная индуктивность
Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:
r — сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.
С — емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.
ESI(ESL) — последовательная индуктивность — это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Где «прячется» ESR в конденсаторе
ESR представляет из себя сопротивление выводов и обкладок
Как вы знаете, сопротивление проводника можно узнать по формуле:
где
ρ — это удельное сопротивление проводника
l — длина проводника
S — площадь поперечного сечения проводника
Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.
Почему вредно большое значение ESR
На нулевой частоте (постоянный ток) и низких частотах, как вы помните из статьи конденсатор в цепи постоянного и переменного тока, конденсатор сам оказывает большое сопротивление электрическому току. В этом случае какие-то паразитные доли Ома сопротивления ESR не будут влиять на параметры электрической цепи. Все самое интересное начинается тогда, когда конденсатор работает в высокочастотных цепях (ВЧ).
Мы с вами знаем, что конденсатор пропускает через себя переменный ток. И чем больше частота, тем меньше сопротивление самого конденсатора. Вот вам формула, если позабыли:
где, ХС — это сопротивление конденсатора, Ом
П — постоянная и равняется приблизительно 3,14
F — частота, измеряется в Герцах
С — емкость, измеряется в Фарадах
Но, одно то мы не учли… Сопротивление выводов и пластин с частотой не меняется! Так… и если пораскинуть мозгами, то получается, что на бесконечной частоте сопротивление конденсатора будет равняться его ESRу? Получается, наш конденсатор превращается в резистор? А как ведет себя резистор в цепи переменного тока? Да точно также как и в цепи постоянного тока: греется! Следовательно на этом резисторе будет рассеиваться мощность P в окружающую среду. А как вы помните, мощность через сопротивление и силу тока выражается формулой:
P=I2xR
где
I — это сила тока, в Амперах
R — сопротивление резистора ESR, в Омах
Значит, если ESR будет больше, то и мощность рассеивания тоже будет больше! То есть этот резистор будет хорошенько нагреваться.
Из всего выше сказанного можно сделать простенький вывод: конденсатор с большим ESR в высокочастотных цепях с большими токами будет нагреваться. Ну да ладно, пусть себе греется… Резисторы и микросхемы тоже ведь греются и ничего! Но весь косяк заключается в том, что с увеличением температуры конденсатора меняется и его емкость! Есть даже такой интересный параметр конденсатора, как ТКЕ или Температурный Коэффициент Емкости. Этот коэффициент показывает, насколько поменяется емкость при изменении температуры. А раз уже «плавает» емкость, то вслед за ней «плывет» и схема.
Схема простейшего измерителя ESR
Рассмотрим работу схемы простейшего измерителя ESR, показанную на рис.1. На микросхеме DD1 собран генератор прямоугольных импульсов (элементы D1.1, D1.2) и буферный усилитель (элементы D1.3, D1.4). Частота генерации определяется элементами С1 и R1 и приблизительно равна 100 кГц.
Рис. 1. Схема простейшего измерителя ESR.
Прямоугольные импульсы через разделительный конденсатор С2 и резистор R2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде VD1 включен микроамперметр РА1, по шкале которого отсчитывают значение ESR.
Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению «бесконечность» измеряемого ESR.
Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению (помните, при С=10 мкФ, Хс=0,16 Ом на частоте 100 кГц) конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю.
При наличии же в измеряемом конденсаторе какого-пибо из описанных выше дефектов, в нем повышается значение ESR. Часть переменного тока потечет через обмотку, и стрелка будет все меньше отклоняться от значения «бесконечность».
Чем больше ESR, тем больший ток протекает через обмотку и меньший через конденсатор, и тем ближе к положению «бесконечность» находится стрелка.
Шкала прибора нелинейная и напоминает шкалу омметра обычного тестера. В качестве измерительной головки можно использовать любой микроамперметр на ток до 500 мкА, хорошо подходят головки от индикаторов уровня записи магнитофонов. Градуировать шкалу не обязательно, достаточно засечь, где будет находиться стрелка, подключая калибровочные резисторы.
Благодаря разделительному повышающему трансформатору напряжение на измерительных щупах прибора не превышает значения 0,05…0,1 В, при котором еще не открываются переходы полупроводниковых приборов. Это дает возможность проверять конденсаторы, не выпаивая их из схемы.
ESR метр MESR-100 v2
Предлагаю вашему вниманию обзор портативного прибора для проверки ESR(ЭПС) конденсаторов MESR-100 v2 который имеет LCD экран с подсветкой и разъем MicroUSB для подключения внешнего источника питания… Что такое ESR (ЭПС) и как это устроено, полезная информация для ознакомления go-radio.ru/esr-kondensatora.html en.wikipedia.org/wiki/Equivalent_series_resistance
Комплект поставки, коробка, вес прибора с батарейками
Технические характеристики прибора, сравнение с первой версией
Compare MESR100 old V1 and new V2 Improvement: 1) Change square wave to sine wave 100 KHz, reduce square wave’s high frequency component, and affect the reading passing the test leads and capacitor. 2) Higher Resolution up to 0.001 ohm.
3) 128X64 dot matrix LCD, with more larger value display and information
4) Embedded 25V capacitor table at LCD, auto display the capacitor is good or bad reference to common 25V electrolytic capacitor.
5) New plastic case, curve design for hand carrying. New stand for 60 degree stand on desk.
6) Use 2X AA battery, more convenience and longer battery life than 9V battery.
7) Support external USB power, using standard micro-USB port.
Внешне прибор выглядит вполне прилично
Таблица ESR на лицевой панели
Имеется складная подставка для его вертикального расположения
Питание осуществляется от 2X AA батареек
Прибор также может питаться от MicroUSB разъема расположенного на его боковой стенке
Замер тока потребления устройства в режиме измерения ёмкости
Включается и управляется прибор тремя кнопками. Включение и отключение — нажатие и удержание на 1-2 секунды Кнопка ZERO — калибровка и кнопка MODE RANGE — ручной выбор диапазона измерений При включении прибора высвечивается сначала название и версия прошивки
Калибровка ESR метра сводится лишь к нажатию и удержанию кнопки ZERO на пару секунд при замкнутых щупах или перемычке на колодке между её + и — т.е. в зависимости от способа измерения
Начинка этого прибора
MESR-100 V2 построен на основе микроконтроллера PIC18F24K20
Дисплей — монохромный LCD с подсветкой из двух светодиодов
Для проверки MESR-100 я подобрал несколько радиодеталей
Подручные ESR измерители; показатели разнятся несильно за исключением плёночных конденсаторов, ну и время измерения оказалось худшее у MG328
В процессе тестирования посмотрел на входы щупов осциллографом Instrustar ISDS 220A; когда к ним ничего не подключено
Заявленная частота 100 KHz совпадает Измерение ёмкости 22uf(плохой, с подсохшим электролитом)
Хороший конденсатор Panasonic Low Esr (FC серии) на 470мкфх25В
Замеры конденсаторов. Перед замером разряжать их обязательно
В клеммную колодку проводник толщиной более 0,6мм нельзя
Этот же конденсатор, но в тестере MG328
Вырезка из даташита на эту ёмкость
Подсохший электролит 22мкф, о чем и сообщает информация с экрана — «хороший если C < 10uf»
Заодно протестировал на приборе плёночные конденсаторы
Замеры сопротивлений
100 Ом
10 Ом
5,11 Ом
Подборка видеоматериала по MESR-100РезюмеПлюсы
MESR-100 показал довольно неплохую точность (после калибровки «0» перед измерениями). Универсальное питание. Экран с подсветкой. Быстрый результат измерений пределах 1-ой секунды на любой ёмкости конденсатора Возможность измерить ЭПС конденсаторов без выпайки их из платы, но для этого придётся менять штатные щупыМинусы При измерениях <0,1 Ом через щупы, прибор выдаёт иногда плавающие показания, а вставить в его клеммную колодку проводник толщиной более 0,6мм нельзя, как тут не вспомнить про зажим Кельвина.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Как сделать прибор для проверки конденсаторов своими руками
Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:
- источник постоянного тока;
- резистор;
- конденсатор;
- вольтметр.
Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.
Схема проверки
После подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.
При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.
Использование мультиметра
Проверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.
Как правильно использовать прибор
Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.
Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.
Вам это будет интересно Измерения напряжения мультиметром
Мостовая схема
Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.
Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.
Измеритель ESR конденсаторов, четвертый вариант
В заключение автор приводит схему еще одного варианта прибора (рис.4) Предпосылки для создания этого «монстра» были следующие: наличие корпуса от неисправного пульта управления видеомагнитофона (с питанием от двух батареек типоразмера ААА, 3 В); наличие много лет лежащего без применения кварца на 119 кГц; наличие не реализованных много лет ИМС К561ЛА7.
Рис. 4. Принципиальная схема измерителя ESR для оксидных конденсаторов на микросхемах К176ЛА7.
Собирать мультивибратор на транзисторах не хотелось (слишком много дискретных элементов), поэтому была проведена проверка работоспособности микросхем К561ЛА7 при пониженном напряжении питания.
Оказалось, что схема прибора, собранная на этих ИМС, начинает работать уже при Un=2,5 В, что вполне приемлемо при питании от батареек (есть запас по питанию при разряде батареи). Из-за низкой нагрузочной способности элементов КМОП на выходе генератора в качестве буферного усилителя пришлось включить пару дополнительных ИМС, однако, на по мнению автора, это не сильно усложнило схему.
Реально на плате микросхемы DD2 и DD3 запаяны «ножка в ножку» одна над другой, поэтому конструктивно добавляется как бы одна микросхема — буферный усилитель с 8-ю параллельно включенными инверторами.
Потребляемый прибором ток при Un=3 В составляет примерно 2,5 мА. Внешний вид прибора показан на рис.5, а расположение деталей внутри корпуса — на рис.6.
Налаживание прибора такое же, как и для описанных выше: отклонения стрелки измерителя на конечную отметку шкалы в положении «ESR» переключателя S1 добиваются, вращая движок подстроечного резистора R3, а в положении «Пробой» — движок резистора R4.
Достоинством схемы является низкое напряжение питания и малый потребляемый ток. Двух батареек питания хватит на много месяцев работы. А вместо кварцевого генератора можно собрать и использовать обычный RC-генератор, например, по схеме, показанной на рис.7.
Рис. 5. Внешний вид прибора.
Рис. 6. расположение деталей внутри корпуса.
Рис. 7. Схема RC-генератора.
Данный прибор — хорошее подспорье радиолюбителям в их домашней измерительной лаборатории. Особенно он будет полезен ремонтникам РЭА. Попробуйте его собрать, и Вы в этом скоро убедитесь.
Г.В. Воличенко, г. Лозовая.
Принцип действия прибора для проверки конденсаторов
Перед тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.
Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.
Вам это будет интересно Измерение ёмкости конденсаторов
При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.
Виды конденсаторов