Мощный генератор высокого напряжения своими руками

Плюсы и минусы

Плюсы: независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель. Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора)

Ток через конденсатор идет плавно

Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 — цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового — UCC работает, как только опустилось ниже минимального — не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.

Техническое задание на проектирование самодельного станка

Чтобы сделать самодельный электроэрозионный станок нужно изготовить ряд приспособлений, которые помогут автоматизировать производственный процесс.

  1. Нужна станина, на ней будет размещаться механизм перемещения электрода.
  2. Потребуется сам механизм, позволяющий периодически подводить и отводить электрод к обрабатываемому материалу.
  3. Для выжигания отверстий разных форм нужно иметь набор электродов. Специалисты рекомендуют использовать молибденовую проволоку.
  4. Для различных типов основного инструмента потребуется менять мощность устройства и силу тока. При разных режимах работы принципиальная электрическая схема должна позволять проводить регулирование величины разряда на электроде. В ней нужно предусмотреть изменение частоты пульсации напряжения.
  5. Для охлаждения детали (перегревать закаленную сталь нельзя, происходит отпуск со снижением твердости) в зону работы нужно осуществлять подачу охлаждающей жидкости. Чаще используют обычную воду или растворы солей. Вода попутно вымывает шлам (разрушенные частицы металла).

Трансформатор Тесла

Инверторный генератор или обычный: что лучше

Многие путают понятия генератора и трансформатора (катушка) Тесла. Для разъяснений нужно остановиться на этом подробнее. Трансформатор Тесла изучен достаточно и доступен для повторения. Многие производители успешно выпускают различные модели трансформаторов как для практического использования в различных устройствах, так и для демонстрационных целей.

Трансформатор Тесла представляет собой преобразователь электрической энергии с низкого напряжения в высокое. Выходное напряжение может составлять миллионы вольт, но сама конструкция при этом не представляет высокой сложности. Гениальность изобретателя состоит в том, что ему удалось собрать устройство, использующее известные физические свойства электромагнитных полей, но при этом совершенно иным способом. Исчерпывающего теоретического обоснования работы устройства не существует до сих пор.

Мощный генератор высокого напряжения своими руками
Трансформатор Тесла

В основе конструкции лежит трансформатор с двумя обмотками, с большим и малым количеством витков. Самое главное – отсутствует традиционный ферромагнитный сердечник, и взаимосвязь между обмотками получается очень слабой. Учитывая уровень выходного напряжения трансформатора Тесла, можно сделать вывод, что обычная методика расчета трансформатора, даже с учетом высокой частоты преобразования, здесь неприменима.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Смотрим:

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто

Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно

Итак, смотрим схему генератора. Имеем:

Два инвертера ( DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Популярные статьи  Резец для токарных работ по дереву из напильника

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.

Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.

Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.

Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя

Генератор высокого напряжения из строчника на транзисторе

Здравствуйте, уважаемые друзья! Сегодня я предлагаю вам собрать генератор высокого напряжения всего на одном транзисторе из строчного трансформатора ТВС-110ПЦ15 с умножителем напряжения УН9/57-13 от старого цветного телевизора. Схема довольно простая, построена по принципу блокинг генератора и содержит небольшое количество деталей.

Мощный генератор высокого напряжения своими рукамиСхема генератора высокого напряжения из строчника на одном транзисторе

Для сборки генератора вам понадобится один транзистор КТ819Г, или импортный аналог TIP41C, но лучше всего использовать MJE13009, поскольку этот транзистор выдерживает ток до 12 А и соответственно будет меньше греться. Лично я в своем генераторе использовал MJE13009. Транзистор обязательно намажьте термопастой и установите на радиатор, желательно с вентилятором.

Еще вам понадобится два резистора мощностью по 5 ватт. На 100 ом и 240 ом, в моем генераторе резисторы очень сильно грелись и я решил приклеить «поксиполом» небольшой радиатор

Самой важной деталью генератора является строчный трансформатор ТВС-110ПЦ15, возможно использовать ТВС-90ЛЦ5 и другие аналогичные от старых цветных, черно белых и даже ламповых телевизоров

Мощный генератор высокого напряжения своими руками

Строчный трансформатор ТВС-110ПЦ15

На магнитопроводе трансформатора надо намотать пару дополнительных обмоток. Катушка L1 содержит 10 витков, намотанных проводом диаметром 1 миллиметр. Катушку L2 мотаем проводом 1,5 миллиметра, всего 4 витка. Обе катушки должны быть намотаны в одну сторону. Вторичная высоковольтная обмотка остается без изменения.

Мощный генератор высокого напряжения своими руками

Строчный трансформатор ТВС-110ПЦ15 с двумя дополнительными обмотками

Умножитель напряжения УН9/27-13 или аналогичный тоже нуждается в незначительной доработке. На нем надо удалить два неиспользуемых вывода, отмеченных на картинке красными стрелками, потом изолировать эти места «поксиполом». Делать это необязательно, но если вы случайно во время эксперимента коснетесь этих выводов… Волосы встанут дыбом и мало не покажется, конечно током не убьет, там очень мало ампер, но обжечь может. Между строчным трансформатором и умножителем устанавливается резистор на 470 ом.

Мощный генератор высокого напряжения своими руками

Умножитель напряжения УН9/27-13

Разрядник сделан из двух проволок диаметром 1 миллиметр. Расстояние между электродами подбирается индивидуально. Для питания генератора лучше всего использовать источник питания от 12 до 30 вольт с силой тока не менее 2А.

Мощный генератор высокого напряжения своими руками

Генератор высокого напряжения. Разрядник

После подачи питания на разряднике появляется мощная дуга. Как измерить напряжение на выходе из умножителя без киловольт метра? Принято считать, 1 миллиметр дуги за 1 киловольт, длина дуги 15 миллиметров, значит напряжение на разряднике примерно 15 киловольт.

Хочу сказать пару слов о технике безопасности. На разрядник из умножителя подается высокое напряжение несколько десятков киловольт, поэтому не прикасайтесь руками к разряднику во избежание поражения электрическим током, даже после отключения питания в конденсаторах умножителя остается высокое напряжение. Конечно током не убьет, потому что мало ампер, но ударит больно и возможно оставит ожоги на коже.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как работает генератор высокого напряжения.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Регулируемый генератор высокого напряжения

Регулируемый генератор высокого напряжения на NE555 и ТВС-90

В жизни иногда не хватает драйва и зрелищности — с хаотичным и загадочным потрескиванием разрядника и с зашкаливающей стоящей рядом радиоаппаратурой.
Всё это может дать вам генератор высокого напряжения!
Но если без рекламы и серъезно, то для некоторых опытов такой генератор — вещь незаменимая.
Вот и мне такой однажды понадобился, причём не просто какой-то там повышающий транс на 1000V, а на 5-20 kV.
Но главное требование — возможность регулирования выходного высокого напряжения.
Порывшись в нете и не найдя подходящей схемы, мне пришлось изобретать свою родимую.

Для задающего генератора взял самую распостранённую мелкосхему — NE555,
а в качестве транса — ТВС-90 (купил на радиорынке за копейки).
Для стабилизации напряжения питания задающего применил не менее распостранённый ШИМ — LM7809.

Принцип действия схемы простой: задающий генератор выбаратывает прямоугольные импульсы с разной скважностью — от неё то и зависит наше выходное высокое напряжение.
Скважность регулируется R3 и подаётся на выходной ключ на MOSFET-транзисторе. Последний возбуждает первичную обмотку ТВС, а на вторичной мы получаем высокое напряжение.. Регулировкой R3 мы можем получить как маленькую искру в доли миллиметра, так и искру длиной в пару сантиметров.

Популярные статьи  Можно ли регулировать как-то обороты асинхронного мотора?

Регулировкой R3 мы можем получить как маленькую искру в доли миллиметра, так и искру длиной в пару сантиметров.

Некоторые моменты на которые стоит обратить внимание

  • Выходной ключ нужно поставить на радиатор, т.к. при больших выходных напряжениях ток через него может превышать 5-8А.
  • Желательно, чтобы корпус устройства быть металлическим (я использовал корпус от компьютерного БП), где минус питания был бы с ним соединён.
  • Напряжение питания можно увеличить до 15-20 Вольт и получить ещё более мощную искру, но в этом случае обязательно нужно пространственно разнести блок задающего генератора и трансформатор.
    Саму задающую схему потребуется заэкранировать, т.к. сильные наводки могут повредить полупроводниковые элементы.

Замены

Ещё схемы

Как сделать генератор статического напряжения за 5$

Мощный генератор высокого напряжения своими руками

В этой статье мы рассмотрим, как сделать генератор статического напряжения. С помощью него можно проводить различные эксперименты, устраивать розыгрыши для друзей, показывать фокусы и так далее. Статическое напряжение способно искажать струю воды, притягивать различные предметы, к примеру, песок, им можно заряжать бумажечки и многое другое.

В качестве основного элемента для самоделки автор решил использовать USB-ионизатор воздуха.

Материалы и инструменты для самоделки: — USB-ионизатор воздуха; — термоусадочная трубка; — провод в изоляции; — горячий клей; — паяльник с припоем; — три аккумуляторных батареи по 1.5 В; — изолента.

Мощный генератор высокого напряжения своими руками
Процесс изготовления самоделки:

Шаг первый. Разбираем ионизатор

Сперва нужно разобрать ионизатор. По словам автора, делается это очень просто. Нужно воспользоваться иголкой или лезвием ножа, чтобы расколоть пластиковые половинки ионизатора. Иногда перед этим нужно выкрутить пару винтов, которые стягивают корпус. По мнению автора, такие приспособления вообще плохо взаимодействуют с компьютером, поэтому он не рекомендует USB-ионизаторы подключать напрямую к ноутбуку или компьютеру. Лучше всего использовать удлинитель.

Мощный генератор высокого напряжения своими руками
Условно схему преобразователя можно разделить на две части. Одна половина схемы, та, которая находится ближе всего к USB, преобразует постоянный ток от порта USB в переменный. Далее этот переменный ток поступает на вторую половину устройства, переходя через миниатюрный трансформатор. Во второй же половине находится четыре множителя напряжения, которые соединены последовательно. В итоге образуется высокое напряжение, которое подается на белый провод. В принципе, эта схема уже почти готова для создания статического напряжения, но автор ее переделывает для работы от батареек.Шаг второй. Добавляем входные и выходные провода

Теперь автор дорабатывает устройство под себя. Первым делом нужно убрать разъем USB. Для этого нужно отогнуть две пластины, которыми порт крепится к плате, а затем коснуться паяльником одновременно четырех контактов разъема. Ну, или отпаивать по одному, постепенно отгибая разъем от платы.

Мощный генератор высокого напряжения своими руками
Перевернув плату, можно увидеть маркировку, которая позволяет определить, к каким контактам подключать питание. Это обозначения V+ и GND (земля, минус). К каждому контакту нужно припаять провода, с помощью них уже будет подключаться батарея. Еще автор убрал белый исходящий провод и припаял на его место более длинный.Шаг третий. Изолируем схему

Чтобы плата не ударила током при работе или не уничтожила сама себя, ее нужно хорошо заизолировать. Для этого места пайки автор изолирует с помощью горячего клея. Помимо этого горячий клей дополнительно фиксирует провода. Далее автор берет термоусадочную трубку и натягивает на плату

После осторожного прогрева термоусадки огнем, она сжимается, но по краям остаются отверстия. Эти отверстия затем заполняются горячим клеем

Теперь устройство хорошо заизолировано. Еще на плате есть светодиод, он показывает, работает ли устройство. Чтобы светодиод был виден, над ним нужно аккуратно сточить термоусадку.

Мощный генератор высокого напряжения своими руками

Шаг четвертый. Подключаем генератор Наверное, всем известно, что USB выдает питание в 5В, однако большинство электроники, подключаемой к компьютерам, может работать в пределах и более низкого напряжение. Так как найти аккумулятор, который бы выдавал 5В проблематично, то автор вместо пяти решил использовать 4.5В, соединив 3 батареи по 1.5 В последовательно. Схема подключения батарей такова, что устройство по умолчанию постоянно включено. Чтобы его выключить, нужно вставить кусок пластика или бумажечку между батареями, тем самым разомкнув цепь. Можно сделать и включатель. Батарейки удерживает кусок изоленты. Еще в этом месте к отрицательному проводу нужно подключить длинный заземляющий провод.

Шаг пятый. Завершающий этап. Тестирование устройства

Чтобы включить устройство, понадобится подключить два кабеля. Один кабель подключается к телу человека (исходящий красный), второй черный — это земля, он подключается к объекту, с которым нужно взаимодействовать. Например, черный провод можно подключить к водопроводному крану, а красный к себе, так можно будет с помощью пальца отклонять поток воды. Источник Доставка новых самоделок на почту Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Способ 1

В Интернете нашел статью о том, как переделать генератор автомобиля на генератор с постоянными магнитами. Можно ли использовать этот принцип и переделать генератор своими руками из асинхронного электродвигателя? Возможно, что будут большие потери энергии, не такое расположение катушек.

Двигатель асинхронного типа у меня на напряжение 110 вольт, обороты – 1450, 2,2 ампера, однофазный. При помощи емкостей я не берусь делать самодельный генератор, так как будут большие потери.

Предлагается пользоваться простыми двигателями по такой схеме.

Мощный генератор высокого напряжения своими руками

Если изменять двигатель или генератор с магнитами округлой формы от динамиков, то надо их устанавливать в крабы? Крабы – это две металлические детали, стоят на якоре снаружи катушек возбуждения.

Если магниты надевать на вал, то вал будет шунтировать магнитные силовые линии. Как тогда будет возбуждение? Катушка тоже расположена на валу из металла.

Если поменять подсоединение обмоток и сделать параллельное соединение, разогнать до оборотов выше нормальных значений, то получается 70 вольт. Где взять механизм для таких оборотов? Если перематывать его на уменьшение оборотов и ниже питание, то слишком упадет мощность.

Двигатель асинхронного типа с замкнутым ротором – это железо, которое залито алюминием. Можно взять самодельный генератор от автомобиля, у которого напряжение 14 вольт, сила тока 80 ампер. Это неплохие данные. Двигатель с коллектором на переменный ток от пылесоса или стиральной машины можно применить для генератора. На статор установить подмагничивание, напряжение постоянного тока снимать со щеток. По наибольшему ЭДС поменять угол щеток. Коэффициент полезного действия стремится к нулю. Но, лучше, чем генератор синхронного типа, не изобрели.

Популярные статьи  Папка для девочки под свидетельство

Решил испытать самодельный генератор. Однофазный асинхронный мотор от стиралки малютки крутил дрелью. Подключил к нему емкость 4 мкФ, получилось 5 вольт 30 герц и ток 1,5 миллиампера на короткое замыкание.

Не каждый электромотор можно использовать в качестве генератора таким методом. Есть моторы со стальным ротором, имеющие малую степень намагниченности на остатке.

Необходимо знать разницу между преобразованием электрической энергии и генерацией энергии. Преобразовать 1 фазу в 3 можно несколькими способами. Один из них – это механическая энергия. Если электростанцию отсоединить от розетки, то пропадает все преобразование.

Откуда возьмется движение провода с повышением скорости, ясно. Откуда магнитное поле будет для получения ЭДС в проводе – не понятно.

Объяснить это просто. Из-за механизма магнетизма, который остался, образуется ЭДС в якоре. Возникает ток в статорной обмотке, который замкнут на емкости.

Ток возник, значит, дает усиление на электродвижущую силу на катушках роторного вала. Появившийся ток дает усиление электродвижущей силы. Электроток статорный образует электродвижущую силу намного больше. Это идет до установления равновесия статорных магнитных потоков и ротора, а также дополнительные потери.

Размер конденсаторов рассчитывают так, что на выводах напряжение достигает номинального значения. Если оно маленькое, то снижают емкость, то повышают. Были сомнения по поводу старых моторов, которые якобы не возбуждаются. После разгона ротора мотора или генератора надо ткнуть быстро в любую фазу малым количеством вольт. Все придет в нормальное состояние. Зарядить конденсатор до напряжения равному половину емкости. Включение производить выключателем с тремя полюсами. Это относится с 3-фазному мотору. Такая схема используется для генераторов вагонов пассажирского транспорта, так как у них ротор короткозамкнутый.

Расчёт блокинг-генератора в автоколебательном режиме

Как любая электронная схема параметры работы блокинг-генератора полностью зависят от величин элементов составляющих схему, поэтому для расчёта необходимо задаться параметрами схемы.

Для расчёта блокинг-генератора обычно задаются следующими выходными характеристиками схемы: амплитуда импульсов Um, период прохождения импульсов Т, длительность импульса τi, сопротивление нагрузки RH.

Так как в настоящее время блокинг-генераторы очень часто используют в качестве задающих генераторов импульсных блоков питания, то для примера рассчитаем простейшую схему, на основе которой можно создать импульсный блок питания.

Зададим следующие параметры для расчёта: частота прохождения импульсов F = 50 кГц, скважность импульсов Q = 0,3, амплитуда выходных импульсов Um = 5 В, сопротивление нагрузки RH = 25 Ом, напряжение питания схемы ЕК = 310 В (выпрямленное сетевое напряжение). 1.Первым этапом расчёта является определение типа транзистора, как основного элемента схемы

Транзистор выбирается по следующим параметрам: максимально допустимое напряжение UCBmax, максимально допустимый ток коллектора ICmax и предельная частота fh21e

1.Первым этапом расчёта является определение типа транзистора, как основного элемента схемы. Транзистор выбирается по следующим параметрам: максимально допустимое напряжение UCBmax, максимально допустимый ток коллектора ICmax и предельная частота fh21e.

Мощный генератор высокого напряжения своими руками

где nH — коэффициент трансформации из коллекторной обмотки в обмотку нагрузки.

Примем IC = 0,02 А

Мощный генератор высокого напряжения своими руками

Данным параметрам удовлетворяет транзистор MJE13001 со следующими характеристиками:

    • тип транзистора: NPN;
    • UCBmax = 600 В;
    • UBЕmax = 7 В;
    • ICmax = 0,2 А;
    • ICBO = 10 мкА;
    • fh21e = 8 МГц;
    • h21e = 5…30;
    • rb ≈ 200 Ом.

2.Определим величину сопротивления R1

Мощный генератор высокого напряжения своими руками

Примем значение R1 = 390 Ом.

3.Рассчитаем параметры импульсного трансформатора. Коэффициент трансформации для выходной обмотки nH

Коэффициент трансформации для обмотки в цепи базы nB

где Ub – напряжение на базе транзистора VT1.

Выберем UB = 5 В. Тогда

Индуктивность коллекторной обмотки трансформатора

где ti – длительность импульса;

R’H – приведённое сопротивление нагрузки;

r’b – приведённое к коллекторной нагрузке сопротивление базы.

Определим длительность импульса и приведённые сопротивления

где rb – внутреннее объемное сопротивление базы. Тогда


Мощный генератор высокого напряжения своими руками

Тогда индуктивность первичной обмотки будет равна

Мощный генератор высокого напряжения своими руками

Примем С1 = 12 нФ
Сопротивление резистора R2

Мощный генератор высокого напряжения своими руками

Примем R2 = 62 кОм.

5.В коллекторную цепь транзистора необходимо включать демпфирующую цепочку. Она позволяет ограничить всплески импульсов на трансформаторе, вследствие чего уменьшаются импульсные помехи и вероятность пробоя транзистора. В данном случае применена простейшая демпфирующая цепь в виде диода VD1, который должен удовлетворять следующим условиям

Мощный генератор высокого напряжения своими руками

Данным параметрам удовлетворяет диод типа 1N4004.

Более подробно о демпфирующих цепях я расскажу, когда будем рассматривать индуктивные элементы и импульсные источники питания.

Бензиновая модификация

Есть две конструкции бензинового генератора, изготовленного своими руками на базе двигателя от триммера и генератора от машины.

Для сборки первого генератора потребуются:

  • бензиновый двигатель от триммера, желательно 4-тактный;
  • рабочий автомобильный генератор;
  • аккумулятор 12 В, необязательно мощный, он будет использоваться только для запуска; без него генератор не сможет вырабатывать электричество, так как на коллектор нужно будет подать начальное напряжение для первого возбуждения.

Устройство с прямой подачей простое и незамысловатое. Единственный сложный этап — подготовка вала под сверлильный патрон.

  • Сначала вал обрезают и точат на станке, а затем нарезают резьбу под патрон.
  • Затем навинчивают патрон, в который зажимают вал электрогенератора.
  • Дальше все крепится на деревянную поставку.
  • Теперь нужно запустить бензиновый движок и подключить генератор к аккумулятору. Вольтмер с лампочкой проверит его работу.

Второй способ сборки генератора чем-то похож на первый, только для процесса вращения применяется ремень. На вал триммера крепится шкив, и все соединяется ремнем. Далее все крепится на деревянное основание. Запускается триммер, и проверяется работа устройства.

Мощный генератор высокого напряжения своими руками

Что касается достоинств бензиновых устройств, то их немало:

  • Сфера использования устройства практически не ограничена. Его используют для электроснабжения загородного дома, дачного участка, при аварийном отключении электричества в больницах, аптеках и торговых точках.
  • Бензиновое устройство имеет небольшие размеры и вес. Его малогабаритность обеспечивает мобильность: удобно брать с собой и перевозить в багажнике.
  • Низкий уровень шума отличает бензиновые устройства от дизельных или газовых.
  • Бензиновые генераторы экономичны в плане расхода топлива, его можно купить на любой заправке.

К недостаткам данного типа генераторов относятся:

  • Основной минус заключается в высокой цене. Газ и дизель обходятся дешевле. Поэтому частое использование подобного устройства невыгодно в финансовом плане.
  • Обладает низкой продолжительностью непрерывной работы, которая не превышает 8 часов. Но этого времени достаточно для энергоснабжения или проведения работ на участке.
Оцените статью
Денис Серебряков
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Мощный генератор высокого напряжения своими руками
Поделки из ракушек своими руками: куда и как применить ракушки, привезённые с моря